Economics at your fingertips  

Forecasting Industrial Production Using Its Aggregated and Disaggregated Series or a Combination of Both: Evidence from One Emerging Market Economy

Diogo de Prince, Emerson Marçal and Pedro Valls Pereira ()
Additional contact information
Diogo de Prince: Economics Department, Federal University of Sao Paulo, Osasco 06120-042, Brazil

Authors registered in the RePEc Author Service: Diogo de Prince Mendonça

Econometrics, 2022, vol. 10, issue 2, 1-34

Abstract: In this paper, we address whether using a disaggregated series or combining an aggregated and disaggregated series improves the forecasting of the aggregated series compared to using the aggregated series alone. We used econometric techniques, such as the weighted lag adaptive least absolute shrinkage and selection operator, and Exponential Triple Smoothing (ETS), as well as the Autometrics algorithm to forecast industrial production in Brazil one to twelve months ahead. This is the novelty of the work, as is the use of the average multi-horizon Superior Predictive Ability (aSPA) and uniform multi-horizon Superior Predictive Ability (uSPA) tests, used to select the best forecasting model by combining different horizons. Our sample covers the period from January 2002 to February 2020. The disaggregated ETS has a better forecast performance when forecasting horizons that are more than one month ahead using the mean square error, and the aggregated ETS has better forecasting ability for horizons equal to 1 and 2. The aggregated ETS forecast does not contain information that is useful for forecasting industrial production in Brazil beyond the information already found in the disaggregated ETS forecast between two and twelve months ahead.

Keywords: industrial production; forecasting; model selection (search for similar items in EconPapers)
JEL-codes: B23 C C00 C01 C1 C2 C3 C4 C5 C8 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link) (application/pdf) (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Econometrics is currently edited by Ms. Jasmine Liu

More articles in Econometrics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

Page updated 2023-11-01
Handle: RePEc:gam:jecnmx:v:10:y:2022:i:2:p:27-:d:839662