Economics at your fingertips  

Detecting Location Shifts during Model Selection by Step-Indicator Saturation

Jennifer Castle (), Jurgen Doornik, David Hendry () and Felix Pretis

Econometrics, 2015, vol. 3, issue 2, 1-25

Abstract: To capture location shifts in the context of model selection, we propose selecting significant step indicators from a saturating set added to the union of all of the candidate variables. The null retention frequency and approximate non-centrality of a selection test are derived using a ‘split-half’ analysis, the simplest specialization of a multiple-path block-search algorithm. Monte Carlo simulations, extended to sequential reduction, confirm the accuracy of nominal significance levels under the null and show retentions when location shifts occur, improving the non-null retention frequency compared to the corresponding impulse-indicator saturation (IIS)-based method and the lasso.

Keywords: structural breaks; model selection; Monte Carlo; indicator saturation; Autometrics (search for similar items in EconPapers)
JEL-codes: B23 C C00 C01 C1 C2 C3 C4 C5 C8 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (53) Track citations by RSS feed

Downloads: (external link) (application/pdf) (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Econometrics is currently edited by Prof. Dr. Kerry Patterson

More articles in Econometrics from MDPI, Open Access Journal
Bibliographic data for series maintained by XML Conversion Team ().

Page updated 2020-08-08
Handle: RePEc:gam:jecnmx:v:3:y:2015:i:2:p:240-264:d:48166