Identifying Vulnerable Households Using Machine Learning
Chen Gao,
Chengcheng Fei,
Bruce McCarl and
David Leatham
Sustainability, 2020, vol. 12, issue 15, 1-18
Abstract:
Many Afghanistan households face food insecurity (FI), and this threatens sustainable development. Policymakers and international donors are trying to alleviate FI using food aid, development assistance, and outreach. This study identified household characteristics that discriminate between food-insecure and food-secure households, facilitating accurate assistance targeting in Afghanistan. We used machine learning classification models (classification decision tree and random forest model) and applied to a household survey. This was done using equal priors and 1.5:1 misclassification penalties. The resulting model is able to correctly identify 80% of food-insecure households. Characteristics in six major categories are found important. Unsurprisingly traditional key variables, such as (1) income and expenditure items, (2) household size, (3) farm-related measures; (4) access to particular resources, and (5) short term shocks are important determinants of food security level. We also found the relevance of long-term household characteristics, such as dwelling wall composition, which are not generally addressed in the existing literature. We argue that these are reflective of accumulated household wealth and this supports the idea that some factors determining food security are persistent. We also found that commonly used demographic variables were not important.
Keywords: food security; machine learning; random forest; program targeting; household wealth (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.mdpi.com/2071-1050/12/15/6002/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/15/6002/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:15:p:6002-:d:390107
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().