Modelling and Solving Rescheduling Problems in Dynamic Permutation Flow Shop Environments
Pablo Valledor,
Alberto Gomez,
Paolo Priore and
Javier Puente
Complexity, 2020, vol. 2020, 1-17
Abstract:
The aim of this paper is to analyse, model, and solve the rescheduling problem in dynamic permutation flow shop environments while considering several criteria to optimize. Searching optimal solutions in multiobjective optimization problems may be difficult as these objectives are expressing different concepts and are not directly comparable. Thus, it is not possible to reduce the problem to a single-objective optimization, and a set of efficient (nondominated) solutions, a so-called Pareto front, must be found. Moreover, in manufacturing environments, disruptive changes usually emerge in scheduling problems, such as machine breakdowns or the arrival of new jobs, causing a need for fast schedule adaptation. In this paper, a mathematical model for this type of problem is proposed and a restarted iterated Pareto greedy (RIPG) metaheuristic is used to find the optimal Pareto front. To demonstrate the appropriateness of this approach, the algorithm is applied to a benchmark specifically designed in this study, considering three objective functions (makespan, total weighted tardiness, and steadiness) and three classes of disruptions (appearance of new jobs, machine faults, and changes in operational times). Experimental studies indicate the proposed approach can effectively solve rescheduling tasks in a multiobjective environment.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/2862186.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/2862186.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:2862186
DOI: 10.1155/2020/2862186
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem (mohamed.abdelhakeem@hindawi.com).