EconPapers    
Economics at your fingertips  
 

Credit Risk Contagion Based on Asymmetric Information Association

Shanshan Jiang, Hong Fan and Min Xia

Complexity, 2018, vol. 2018, 1-11

Abstract:

The study of the contagion law of credit risk is very important for financial market supervision. The existing credit risk contagion models based on complex network theory assume that the information between individuals in the network is symmetrical and analyze the proportion of the individuals infected by the credit risk from a macro perspective. However, how individuals are infected from a microscopic perspective is not clear, besides the level of the infection of the individuals is characterized by only two states: completely infected or not infected, which is not realistic. In this paper, a credit risk contagion model based on asymmetric information association is proposed. The model can effectively describe the correlation among individuals with credit risk. The model can analyze how the risk individuals are infected in the network and can effectively reflect the risk contagion degree of the individual. This paper further analyzes the influence of network structure, information association, individual risk attitude, financial market supervision intensity, and individual risk resisting ability on individual risk contagion. The correctness of the model is verified by theoretical deduction and numerical simulation.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2018/2929157.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2018/2929157.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:2929157

DOI: 10.1155/2018/2929157

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:2929157