Effective Data Transmission and Control Based on Social Communication in Social Opportunistic Complex Networks
Weiyu Yang,
Jia Wu and
Jingwen Luo
Complexity, 2020, vol. 2020, 1-20
Abstract:
In opportunistic complex networks, information transmission between nodes is inevitable through broadcast. The purpose of broadcasting is to distribute data from source nodes to all nodes in the network. In opportunistic complex networks, it is mainly used for routing discovery and releasing important notifications. However, when a large number of nodes in the opportunistic complex networks are transmitting information at the same time, signal interference will inevitably occur. Therefore, we propose a low-latency broadcast algorithm for opportunistic complex networks based on successive interference cancellation techniques to improve propagation delay. With this kind of algorithm, when the social network is broadcasting, this algorithm analyzes whether the conditions for successive interference cancellation are satisfied between the broadcast links on the assigned transmission time slice. If the conditions are met, they are scheduled at the same time slice, and interference avoidance scheduling is performed when conditions are not met. Through comparison experiments with other classic algorithms of opportunistic complex networks, this method has outstanding performance in reducing energy consumption and improving information transmission efficiency.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/3721579.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/3721579.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:3721579
DOI: 10.1155/2020/3721579
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().