EconPapers    
Economics at your fingertips  
 

Water-Based Metaheuristics: How Water Dynamics Can Help Us to Solve NP-Hard Problems

Fernando Rubio and Ismael Rodríguez

Complexity, 2019, vol. 2019, 1-13

Abstract:

Many water-based optimization metaheuristics have been introduced during the last decade, both for combinatorial and for continuous optimization. Despite the strong similarities of these methods in terms of their underlying natural metaphors (most of them emulate, in some way or another, how drops collaboratively form paths down to the sea), in general the resulting algorithms are quite different in terms of their searching approach or their solution construction approach. For instance, each entity may represent a solution by itself or, alternatively, entities may construct solutions by modifying the landscape while moving. A researcher or practitioner could assume that the degree of similarity between two water-based metaheuristics heavily depends on the similarity of the natural water mechanics they emulate, but this is not the case. In order to bring some clarity to this mosaic of apparently related metaheuristics, in this paper we introduce them, explain their mechanics, and highlight their differences.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2019/4034258.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2019/4034258.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:4034258

DOI: 10.1155/2019/4034258

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:4034258