Predicting Facial Biotypes Using Continuous Bayesian Network Classifiers
Gonzalo A. Ruz and
Pamela Araya-Díaz
Complexity, 2018, vol. 2018, 1-14
Abstract:
Bayesian networks are useful machine learning techniques that are able to combine quantitative modeling, through probability theory, with qualitative modeling, through graph theory for visualization. We apply Bayesian network classifiers to the facial biotype classification problem, an important stage during orthodontic treatment planning. For this, we present adaptations of classical Bayesian networks classifiers to handle continuous attributes; also, we propose an incremental tree construction procedure for tree like Bayesian network classifiers. We evaluate the performance of the proposed adaptations and compare them with other continuous Bayesian network classifiers approaches as well as support vector machines. The results under the classification performance measures, accuracy and kappa, showed the effectiveness of the continuous Bayesian network classifiers, especially for the case when a reduced number of attributes were used. Additionally, the resulting networks allowed visualizing the probability relations amongst the attributes under this classification problem, a useful tool for decision-making for orthodontists.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2018/4075656.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2018/4075656.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:4075656
DOI: 10.1155/2018/4075656
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().