An Entropy-Based Self-Adaptive Node Importance Evaluation Method for Complex Networks
Qibo Sun,
Guoyu Yang and
Ao Zhou
Complexity, 2020, vol. 2020, 1-13
Abstract:
Identifying important nodes in complex networks is essential in disease transmission control, network attack protection, and valuable information detection. Many evaluation indicators, such as degree centrality, betweenness centrality, and closeness centrality, have been proposed to identify important nodes. Some researchers assign different weight to different indicator and combine them together to obtain the final evaluation results. However, the weight is usually subjectively assigned based on the researcher’s experience, which may lead to inaccurate results. In this paper, we propose an entropy-based self-adaptive node importance evaluation method to evaluate node importance objectively. Firstly, based on complex network theory, we select four indicators to reflect different characteristics of the network structure. Secondly, we calculate the weights of different indicators based on information entropy theory. Finally, based on aforesaid steps, the node importance is obtained by weighted average method. The experimental results show that our method performs better than the existing methods.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/4529429.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/4529429.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:4529429
DOI: 10.1155/2020/4529429
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().