EconPapers    
Economics at your fingertips  
 

Prediction of Seepage Pressure Based on Memory Cells and Significance Analysis of Influencing Factors

Mengdie Zhao, Haifeng Jiang, Shoukai Chen, Yajing Bie and Muhammad Ahmad

Complexity, 2021, vol. 2021, 1-10

Abstract: Seepage analysis is always a concern in dam safety and stability research. The prediction and analysis of seepage pressure monitoring data is an effective way to ensure the safety and stability of dam seepage. With the timeliness of a change in a monitoring value and lag due to external influences, a RS-LSTM model written in Python is developed in this paper which combines rough set theory (RS) and the long- and short-term memory network model (LSTM). The model proposed calculates the prediction score of the seepage pressure of a dam experiencing multiple effects by preordering factor importance values to eliminate the interference of redundant factors. A case study shows that the water level, rainfall, temperature, and duration are all factors that affect the seepage pressure, and their importance values decrease successively. Thus, the seepage pressure of a dam can be predicted with a determination coefficient R2 of 0.96. Compared with the recurrent neural network (RNN) model and BP neural network model, the training time of the RS-LSTM model proposed is 6.37 s, and the operation efficiency is 41% and 59% higher than that of the RNN and BP models, respectively. The mean relative error is also 3.00%, which is 50% lower than that of the RNN model and 31% lower than that of the BP model. Based on these results, this model has the advantages of fast computation speed and high accuracy in prediction.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2021/5576148.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2021/5576148.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:5576148

DOI: 10.1155/2021/5576148

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem (mohamed.abdelhakeem@hindawi.com).

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:5576148