EconPapers    
Economics at your fingertips  
 

Identification of Accounting Fraud Based on Support Vector Machine and Logistic Regression Model

Rongyuan Qin and Wei Wang

Complexity, 2021, vol. 2021, 1-11

Abstract: The authenticity of the company’s accounting information is an important guarantee for the effective operation of the capital market. Accounting fraud is the tampering and distortion of the company’s public disclosure information. The continuous outbreak of fraud cases has dealt a heavy blow to the confidence of investors, shaken the credit foundation of the capital market, and hindered the healthy and stable development of the capital market. Therefore, it is of great theoretical and practical significance to carry out the research on the identification and governance of accounting fraud. Traditionally, accounting fraud identification is mostly based on linear thinking to build the fraud identification model. However, more and more studies show that fraud has typical nonlinear characteristics, and the multiobjective of fraud means also determines the limitations of using the linear model for identification. Considering that the traditional identification methods may have the defects of model setting error and insufficient information extraction, this paper constructs the support vector machine and logistic regression model to identify accounting fraud. The support vector machine is used to improve the learning ability and generalization ability of unknown phenomena, and the explanatory power of each variable to the whole model is identified by the logistic regression model. This paper breaks through the linear constraint hypothesis and explores the model setting form which is more suitable for the law of corporate fraud behaviour to extract the fraud identification information more fully and provide more powerful support for investors to effectively identify fraud.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2021/5597060.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2021/5597060.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:5597060

DOI: 10.1155/2021/5597060

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:5597060