Active Fault-Tolerant Control for Wind Turbine with Simultaneous Actuator and Sensor Faults
Lei Wang,
Ming Cai,
Hu Zhang,
Fuad Alsaadi and
Liu Chen
Complexity, 2017, vol. 2017, 1-11
Abstract:
The purpose of this paper is to show a novel fault-tolerant tracking control (FTC) strategy with robust fault estimation and compensating for simultaneous actuator sensor faults. Based on the framework of fault-tolerant control, developing an FTC design method for wind turbines is a challenge and, thus, they can tolerate simultaneous pitch actuator and pitch sensor faults having bounded first time derivatives. The paper’s key contribution is proposing a descriptor sliding mode method, in which for establishing a novel augmented descriptor system, with which we can estimate the state of system and reconstruct fault by designing descriptor sliding mode observer, the paper introduces an auxiliary descriptor state vector composed by a system state vector, actuator fault vector, and sensor fault vector. By the optimized method of LMI, the conditions for stability that estimated error dynamics are set up to promote the determination of the parameters designed. With this estimation, and designing a fault-tolerant controller, the system’s stability can be maintained. The effectiveness of the design strategy is verified by implementing the controller in the National Renewable Energy Laboratory’s 5-MW nonlinear, high-fidelity wind turbine model (FAST) and simulating it in MATLAB/Simulink.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2017/6164841.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2017/6164841.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:6164841
DOI: 10.1155/2017/6164841
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().