EconPapers    
Economics at your fingertips  
 

An Improved Deep Learning Network Structure for Multitask Text Implication Translation Character Recognition

Xiaoli Ma, Hongyan Xu, Xiaoqian Zhang, Haoyong Wang and Wei Wang

Complexity, 2021, vol. 2021, 1-11

Abstract: With the rapid development of artificial intelligence technology, multitasking textual translation has attracted more and more attention. Especially after the application of deep learning technology, the performance of multitask translation text detection and recognition has been greatly improved. However, because multitasking contains the interference problem faced by the translated text, there is a big gap between recognition performance and actual application requirements. Aiming at multitasking and translation text detection, this paper proposes a text localization method based on multichannel multiscale detection of the largest stable extreme value region and cascade filtering. This paper selects the appropriate color channel and scale to extract the maximum stable extreme value area as the character candidate area and designs a cascaded filter from coarse to fine to remove false detections. The coarse filter is based on some simple morphological features and stroke width features, and the fine filter is trained by a two-recognition convolutional neural network. The remaining character candidate regions are merged into horizontal or multidirectional character strings through the graph model. The experimental results on the text data set prove the effectiveness of the improved deep learning network character model and the feasibility of the textual implication translation analysis method based on this model. Among them, the text contains translation character recognition results prove that the model has good description ability. The characteristics of the model determine that this method is not sensitive to the scale of the sliding window, so it performs better than the existing typical methods in retrieval tasks.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2021/6617799.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2021/6617799.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:6617799

DOI: 10.1155/2021/6617799

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:6617799