EconPapers    
Economics at your fingertips  
 

I-GANs for Infrared Image Generation

Bing Li, Yong Xian, Juan Su, Da Q. Zhang, Wei L. Guo and Ning Cai

Complexity, 2021, vol. 2021, 1-11

Abstract: The making of infrared templates is of great significance for improving the accuracy and precision of infrared imaging guidance. However, collecting infrared images from fields is difficult, of high cost, and time-consuming. In order to address this problem, an infrared image generation method, infrared generative adversarial networks (I-GANs), based on conditional generative adversarial networks (CGAN) architecture is proposed. In I-GANs, visible images instead of random noise are used as the inputs, and the D-LinkNet network is also utilized to build the generative model, enabling improved learning of rich image textures and identification of dependencies between images. Moreover, the PatchGAN architecture is employed to build a discriminant model to process the high-frequency components of the images effectively and reduce the amount of calculation required. In addition, batch normalization is used to optimize the training process, and thereby, the instability and mode collapse of the generated adversarial network training can be alleviated. Finally, experimental verification is conducted on the produced infrared/visible light dataset (IVFG). The experimental results reveal that high-quality and reliable infrared data are generated by the proposed I-GANs.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2021/6635242.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2021/6635242.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:6635242

DOI: 10.1155/2021/6635242

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem (mohamed.abdelhakeem@hindawi.com).

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:6635242