EconPapers    
Economics at your fingertips  
 

Analyzing Nonlinear Dynamics via Data-Driven Dynamic Mode Decomposition-Like Methods

Soledad Le Clainche and José M. Vega

Complexity, 2018, vol. 2018, 1-21

Abstract:

This article presents a review on two methods based on dynamic mode decomposition and its multiple applications, focusing on higher order dynamic mode decomposition (which provides a purely temporal Fourier-like decomposition) and spatiotemporal Koopman decomposition (which gives a spatiotemporal Fourier-like decomposition). These methods are purely data-driven, using either numerical or experimental data, and permit reconstructing the given data and identifying the temporal growth rates and frequencies involved in the dynamics and the spatial growth rates and wavenumbers in the case of the spatiotemporal Koopman decomposition. Thus, they may be used to either identify and extrapolate the dynamics from transient behavior to permanent dynamics or construct efficient, purely data-driven reduced order models.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2018/6920783.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2018/6920783.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:6920783

DOI: 10.1155/2018/6920783

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:6920783