EconPapers    
Economics at your fingertips  
 

Extension of the Multi-TP Model Transformation to Functions with Different Numbers of Variables

Peter Baranyi

Complexity, 2018, vol. 2018, 1-9

Abstract:

The tensor product (TP) model transformation defines and numerically reconstructs the Higher-Order Singular Value Decomposition (HOSVD) of functions. It plays the same role with respect to functions as HOSVD does for tensors (and SVD for matrices). The need for certain advantageous features, such as rank/complexity reduction, trade-offs between complexity and accuracy, and a manipulation power representative of the TP form, has motivated novel concepts in TS fuzzy model based modelling and control. The latest extensions of the TP model transformation, called the multi- and generalised TP model transformations, are applicable to a set functions where the dimensionality of the outputs of the functions may differ, but there is a strict limitation on the dimensionality of their inputs, which must be the same. The paper proposes an extended version that is applicable to a set of functions where both the input and output dimensionalities of the functions may differ. This makes it possible to transform complete multicomponent systems to TS fuzzy models along with the above-mentioned advantages.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2018/8546976.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2018/8546976.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:8546976

DOI: 10.1155/2018/8546976

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:8546976