Impact of Awareness to Control Malaria Disease: A Mathematical Modeling Approach
Malik Muhammad Ibrahim,
Muhammad Ahmad Kamran,
Malik Muhammad Naeem Mannan,
Sangil Kim and
Il Hyo Jung
Complexity, 2020, vol. 2020, 1-13
Abstract:
The mathematical modeling of malaria disease has a crucial role in understanding the insights of the transmission dynamics and corresponding appropriate prevention strategies. In this study, a novel nonlinear mathematical model for malaria disease has been proposed. To prevent the disease, we divided the infected population into two groups, unaware and aware infected individuals. The growth rate of awareness programs impacting the population is assumed to be proportional to the unaware infected individuals. It is further assumed that, due to the effect of awareness campaign, the aware infected individuals avoid contact with mosquitoes. The positivity and the boundedness of solutions have been derived through the completing differential process. Local and global stability analysis of disease-free equilibrium has been investigated via basic reproductive number R 0 , if R 0 < 1, the system is stable otherwise unstable. The existence of the unique endemic equilibrium has been also determined under certain conditions. The solution to the proposed model is derived through an iterative numerical technique, the Runge–Kutta method. The proposed model is simulated for different numeric values of the population of humans and anopheles in each class. The results show that a significant increase in the population of susceptible humans is achieved in addition to the decrease in the population of the infected mosquitoes.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/8657410.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/8657410.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:8657410
DOI: 10.1155/2020/8657410
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().