Inherent Stability of Multibody Systems with Variable-Stiffness Springs via Absolute Stability Theory
Tianyang Hua,
Yinlong Hu and
Carlos Aguilar-Ibanez
Complexity, 2021, vol. 2021, 1-12
Abstract:
In this paper, the inherent stability problem for multibody systems with variable-stiffness springs (VSSs) is studied. Since multibody systems with VSSs may consume energy during the variation of stiffness, the inherent stability is not always ensured. The motivation of this paper is to present sufficient conditions that ensure the inherent stability of multibody systems with VSSs. The absolute stability theory is adopted, and N-degree-of-freedom (DOF) systems with VSSs are formulated as a Lur’e form. Furthermore, based on the circle criterion, sufficient conditions for the inherent stability of the systems are obtained. In order to verify these conditions, both frequency-domain and time-domain numerical simulations are conducted for several typical low-DOF systems.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2021/8662275.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2021/8662275.xml (application/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:8662275
DOI: 10.1155/2021/8662275
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().