EconPapers    
Economics at your fingertips  
 

Load Parameter Identification for Parallel Robot Manipulator Based on Extended Kalman Filter

Shijie Song, Xiaolin Dai, Zhangchao Huang and Dawei Gong

Complexity, 2020, vol. 2020, 1-12

Abstract:

Load is the main external disturbance of a parallel robot manipulator. This disturbance will cause dynamic coupling among different degrees of freedom and make heaps of model-based control methods difficult to apply. In order to compensate this disturbance, it is crucial to obtain an accurate dynamic model of load. However, in practice, the load is always uncertain and its dynamic parameters are arduous to know a priori. To cope with this problem, this paper proposes a novel and simple approach to identify the dynamic parameters of load. Firstly, the dynamic model of the parallel robot manipulator with uncertain load is established and the dynamic coupling caused by load is also analyzed. Then, according to the dynamic model, the excitation signal is designed and a weak nonlinear dynamic model is derived. Furthermore, the identification model is presented and the identification algorithm based on the extended Kalman filter is designed. Lastly, numerical simulation results, obtained using a six-degree-of-freedom Gough–Stewart parallel manipulator, demonstrate the good estimation performance of the proposed method.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/8816374.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/8816374.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:8816374

DOI: 10.1155/2020/8816374

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:8816374