EconPapers    
Economics at your fingertips  
 

Adaptive Barrier Control for Nonlinear Servomechanisms with Friction Compensation

Shubo Wang, Haisheng Yu, Xuehui Gao and Na Wang

Complexity, 2018, vol. 2018, 1-10

Abstract:

This paper proposes an adaptive barrier controller for servomechanisms with friction compensation. A modified LuGre model is used to capture friction dynamics of servomechanisms. This model is incorporated into an augmented neural network (NN) to account for the unknown nonlinearities. Moreover, a barrier Lyapunov function (BLF) is utilized to each step in a backstepping design procedure. Then, a novel adaptive control method is well suggested to ensure that the full-state constraints are within the given boundary. The stability of the closed-loop control system is proved using Lyapunov stability theory. Comparative experiments on a turntable servomechanism confirm the effectiveness of the devised control method.

Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2018/8925838.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2018/8925838.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:8925838

DOI: 10.1155/2018/8925838

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:8925838