Prediction for the Inventory Management Chaotic Complexity System Based on the Deep Neural Network Algorithm
Tengfei Lei,
Rita Yi Man Li,
Nuttapong Jotikastira,
Haiyan Fu,
Cong Wang and
Chun-Biao Li
Complexity, 2023, vol. 2023, 1-11
Abstract:
Precise inventory prediction is the key to goods inventory and safety management. Accurate inventory prediction improves enterprises’ production efficiency. It is also essential to control costs and optimize the supply chain’s performance. Nevertheless, the complex inventory data are often chaotic and nonlinear; high data complexity raises the accuracy prediction difficulty. This study simulated inventory records by using the dynamics inventory management system. Four deep neural network models trained the data: short-term memory neural network (LSTM), convolutional neural network-long short-term memory (CNN-LSTM), bidirectional long short-term memory neural network (Bi-LSTM), and deep long-short-term memory neural network (DLSTM). Evaluating the models’ performance based on RMSE, MSE, and MAE, bi-LSTM achieved the highest prediction accuracy with the least square error of 0.14%. The results concluded that the complexity of the model was not directly related to the prediction performance. By contrasting several methods of chaotic nonlinear inventory data and neural network dynamics prediction, this study contributed to the academia. The research results provided useful advice for companies’ planned production and inventory officers when they plan for product inventory and minimize the risk of mishaps brought on by excess inventories in warehouses.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2023/9369888.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2023/9369888.xml (application/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:9369888
DOI: 10.1155/2023/9369888
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().