EconPapers    
Economics at your fingertips  
 

Complexity Measures for Maxwell–Boltzmann Distribution

Nicholas Smaal, José Roberto C. Piqueira and Marcelo Messias

Complexity, 2021, vol. 2021, 1-6

Abstract: This work presents a discussion about the application of the Kolmogorov; López-Ruiz, Mancini, and Calbet (LMC); and Shiner, Davison, and Landsberg (SDL) complexity measures to a common situation in physics described by the Maxwell–Boltzmann distribution. The first idea about complexity measure started in computer science and was proposed by Kolmogorov, calculated similarly to the informational entropy. Kolmogorov measure when applied to natural phenomena, presents higher values associated with disorder and lower to order. However, it is considered that high complexity must be associated to intermediate states between order and disorder. Consequently, LMC and SDL measures were defined and used in attempts to model natural phenomena but with the inconvenience of being defined for discrete probability distributions defined over finite intervals. Here, adapting the definitions to a continuous variable, the three measures are applied to the known Maxwell–Boltzmann distribution describing thermal neutron velocity in a power reactor, allowing extension of complexity measures to a continuous physical situation and giving possible discussions about the phenomenon.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2021/9646713.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2021/9646713.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:9646713

DOI: 10.1155/2021/9646713

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem (mohamed.abdelhakeem@hindawi.com).

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:9646713