EconPapers    
Economics at your fingertips  
 

Higher-Stage Noether Identities and Second Noether Theorems

G. Sardanashvily

Advances in Mathematical Physics, 2015, vol. 2015, 1-19

Abstract:

The direct and inverse second Noether theorems are formulated in a general case of reducible degenerate Grassmann-graded Lagrangian theory of even and odd variables on graded bundles. Such Lagrangian theory is characterized by a hierarchy of nontrivial higher-stage Noether identities which is described in the homology terms. If a certain homology regularity condition holds, one can associate with a reducible degenerate Lagrangian the exact Koszul–Tate chain complex possessing the boundary operator whose nilpotentness is equivalent to all complete nontrivial Noether and higher-stage Noether identities. The second Noether theorems associate with the above-mentioned Koszul–Tate complex a certain cochain sequence whose ascent operator consists of the gauge and higher-order gauge symmetries of a Lagrangian system. If gauge symmetries are algebraically closed, this operator is extended to the nilpotent BRST operator which brings the above-mentioned cochain sequence into the BRST complex and provides a BRST extension of an original Lagrangian.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/AMP/2015/127481.pdf (application/pdf)
http://downloads.hindawi.com/journals/AMP/2015/127481.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlamp:127481

DOI: 10.1155/2015/127481

Access Statistics for this article

More articles in Advances in Mathematical Physics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlamp:127481