Economics at your fingertips  

The Block Principal Pivoting Algorithm for the Linear Complementarity Problem with an - Matrix

Zhi-Jun Qiao (), Xi-Ming Fang () and Heng-Jun Zhao ()

Advances in Mathematical Physics, 2019, vol. 2019, 1-7

Abstract: The principal pivoting algorithm is a popular direct algorithm in solving the linear complementarity problem, and its block forms had also been studied by many authors. In this paper, relying on the characteristic of block principal pivotal transformations, a block principal pivoting algorithm is proposed for solving the linear complementarity problem with an - matrix. By this algorithm, the linear complementarity problem can be solved in some block principal pivotal transformations. Besides, both the lower-order and the higher-order experiments are presented to show the effectiveness of this algorithm.

Date: 2019
References: Add references at CitEc
Citations: Track citations by RSS feed

Downloads: (external link) (application/pdf) (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1155/2019/2976768

Access Statistics for this article

More articles in Advances in Mathematical Physics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

Page updated 2019-12-30
Handle: RePEc:hin:jnlamp:2976768