EconPapers    
Economics at your fingertips  
 

Extended Minimal Atomicity through Nondifferentiability: A Mathematical-Physical Approach

Gabriel Gavriluţ (), Maricel Agop () and Alina Gavriluţ ()

Advances in Mathematical Physics, 2019, vol. 2019, 1-16

Abstract: The mathematical concept of minimal atomicity is extended to fractal minimal atomicity, based on the nondifferentiability of the motion curves of physical system entities on a fractal manifold. For this purpose, firstly, different results concerning minimal atomicity from the mathematical procedure of the Quantum Measure Theory and also several physical implications are obtained. Further, an inverse method with respect to the common developments concerning the minimal atomicity concept has been used, showing that Quantum Mechanics is identified as a particular case of Fractal Mechanics at a given scale resolution. More precisely, for fractality through Markov type stochastic processes, i.e., fractalization through stochasticization, the standard Schrödinger equation is identified with the geodesics of a fractal space for motions of the physical system entities on nondifferentiable curves on fractal dimension two at Compton scale resolution. In the one-dimensional stationary case of the fractal Schrödinger type geodesics, a special symmetry induced by the homographic group in Barbilian’s form “makes possible the synchronicity” of all entities of a given physical system. The integral and differential properties of this group under the restriction of defining a parallelism of directions in Levi-Civita’s sense impose correspondences with the “dynamics” of the hyperbolic plane so that harmonic mappings between the ordinary flat space and the hyperbolic one generate (by means of a variational principle) a priori probabilities in Jaynes’ sense. The explicitation of such situation specifies the fact that the hydrodynamical variant of a Fractal Mechanics is more easily approached and, from this, the fact that Quantum Measure Theory can be a particular case of a possible Fractal Measure Theory.

Date: 2019
References: Add references at CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://downloads.hindawi.com/journals/AMP/2019/8298691.pdf (application/pdf)
http://downloads.hindawi.com/journals/AMP/2019/8298691.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlamp:8298691

DOI: 10.1155/2019/8298691

Access Statistics for this article

More articles in Advances in Mathematical Physics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2019-12-30
Handle: RePEc:hin:jnlamp:8298691