EconPapers    
Economics at your fingertips  
 

Generating -Commutator Identities and the -BCH Formula

Andrea Bonfiglioli and Jacob Katriel

Advances in Mathematical Physics, 2016, vol. 2016, 1-26

Abstract:

Motivated by the physical applications of -calculus and of -deformations, the aim of this paper is twofold. Firstly, we prove the -deformed analogue of the celebrated theorem by Baker, Campbell, and Hausdorff for the product of two exponentials. We deal with the -exponential function , where denotes, as usual, the th -integer. We prove that if and are any noncommuting indeterminates, then , where is a sum of iterated -commutators of and (on the right and on the left, possibly), where the -commutator has always the innermost position. When , this expansion is consistent with the known result by Schützenberger-Cigler: . Our result improves and clarifies some existing results in the literature. Secondly, we provide an algorithmic procedure for obtaining identities between iterated -commutators (of any length) of and . These results can be used to obtain simplified presentation for the summands of the -deformed Baker-Campbell-Hausdorff Formula.

Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/AMP/2016/9598409.pdf (application/pdf)
http://downloads.hindawi.com/journals/AMP/2016/9598409.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlamp:9598409

DOI: 10.1155/2016/9598409

Access Statistics for this article

More articles in Advances in Mathematical Physics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem (mohamed.abdelhakeem@hindawi.com).

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlamp:9598409