Distribution of the Largest Strong Goldbach Numbers Generated by Primes
Pingyuan Zhou and
Rong Ao
Journal of Mathematics Research, 2018, vol. 10, issue 5, 1-8
Abstract:
Using the first 4000000 primes to find Ln, the largest strong Goldbach number generated by the n-th prime Pn, we generalize a proposition in our previous work (Zhou 2017) and propose that Ln ≈ 2Pn and Ln/2Pn 1 for sufficiently large Pn but the limit of Ln/(Pn + n log n) as n → ∞ is 1. There are five corollaries of the generalized proposition for getting Ln → ∞ as n → ∞, which is equivalent to Goldbach’s conjecture. If every step in distribution curve of Ln is called a Goldbach step, a study on the ratio of width to height for Goldbach steps supports the existence of above two limits but a study on distribution of Goldbach steps supports an estimation that Q(n) ≈ (1 + 1/log log n)n/log n and the limit of Q(n)/((1 + 1/log log n)n/log n) as n → ∞ is 1, where Q(n) is the number of Goldbach steps, from which we may expect there are infinitely many Goldbach steps to imply Goldbach’s conjecture.
Keywords: prime; largest strong Goldbach number; numerical evidence; Goldbach step; Goldbach’s conjecture (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.ccsenet.org/journal/index.php/jmr/article/download/75487/42124 (application/pdf)
http://www.ccsenet.org/journal/index.php/jmr/article/view/75487 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ibn:jmrjnl:v:10:y:2018:i:5:p:1
Access Statistics for this article
More articles in Journal of Mathematics Research from Canadian Center of Science and Education Contact information at EDIRC.
Bibliographic data for series maintained by Canadian Center of Science and Education ().