EconPapers    
Economics at your fingertips  
 

Blow-up for Discretizations of a Nonlinear Parabolic Equation With Nonlinear Memory and Mixt Boundary Condition

Camara Zié, N’gohisse Konan Firmin and Yoro Gozo

Journal of Mathematics Research, 2019, vol. 11, issue 6, 29

Abstract: In this paper, we study the numerical approximation for the following initial-boundary value problem v_t=v_{xx}+v^q\int_{0}^{t}v^p(x,s)ds, x\in(0,1), t\in(0,T) v(0,t)=0, v_x(1,t)=0, t\in(0,T) v(x,0)=v_0(x)>0}, x\in(0,1) where q>1, p>0. Under some assumptions, it is shown that the solution of a semi-discrete form of this problem blows up in the finite time and estimate its semi-discrete blow-up time. We also prove that the semi-discrete blows-up time converges to the real one when the mesh size goes to zero. A similar study has been also undertaken for a discrete form of the above problem. Finally, we give some numerical results to illustrate our analysis.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.ccsenet.org/journal/index.php/jmr/article/download/0/0/41195/42912 (application/pdf)
http://www.ccsenet.org/journal/index.php/jmr/article/view/0/41195 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ibn:jmrjnl:v:11:y:2019:i:6:p:29

Access Statistics for this article

More articles in Journal of Mathematics Research from Canadian Center of Science and Education Contact information at EDIRC.
Bibliographic data for series maintained by Canadian Center of Science and Education ().

 
Page updated 2025-03-19
Handle: RePEc:ibn:jmrjnl:v:11:y:2019:i:6:p:29