EconPapers    
Economics at your fingertips  
 

Systems Simplicity

Alanod M. Sibih

Journal of Mathematics Research, 2021, vol. 13, issue 3, 54

Abstract: A simple system is a system who has no proper ideals. We prove that every simple system $\mathcal{J}$ have one of the following assertion- \begin{description} \item[$(1)$] $\mathcal{J}$ is $\mathfrak{h}-$irreducible. \item[$(2)$] $\mathcal{J}=\mathcal{J}_1\bigoplus\widetilde{\mathcal{J}_1}$ is the direct summation of two $\mathfrak{h}-$invariant and $\mathfrak{h}-$irreducible subsystems. \end{description}

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.ccsenet.org/journal/index.php/jmr/article/download/0/0/45310/48060 (application/pdf)
http://www.ccsenet.org/journal/index.php/jmr/article/view/0/45310 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ibn:jmrjnl:v:13:y:2021:i:3:p:54

Access Statistics for this article

More articles in Journal of Mathematics Research from Canadian Center of Science and Education Contact information at EDIRC.
Bibliographic data for series maintained by Canadian Center of Science and Education ().

 
Page updated 2025-03-19
Handle: RePEc:ibn:jmrjnl:v:13:y:2021:i:3:p:54