EconPapers    
Economics at your fingertips  
 

Estimation of Causal Functional Linear Regression Models

J.C.S. de Miranda

Journal of Mathematics Research, 2017, vol. 9, issue 6, 106-111

Abstract: We present a methodology for estimating causal functional linear models using orthonormal tensor product expansions. More precisely, we estimate the functional parameters $\alpha$ and $\beta$ that appear in the causal functional linear regression model:$$\mathcal{Y}(s)=\alpha(s)+\int_a^b\beta(s,t)\mathcal{X}(t)\mathrm{d}t+\mathcal{E}(s),$$ where $\mbox{supp } \beta \subset \mathfrak{T},$ and $\mathfrak{T}$ is the closed triangular region whose vertexes are $(a,a) , (b,a)$ and $(b,b).$ We assume we have an independent sample $\{ (\mathcal{Y}_k,\mathcal{X}_k) : 1\le k \le N, k\in \mathbb{N}\}$ of observations where the $\mathcal{X}_k $'s are functional covariates, the $\mathcal{Y}_k$'s are time order preserving functional responses and $\mathcal{E}_k,$ $1\le k \le N,$ is i.i.d. zero mean functional noise.

Keywords: causal; functional linear model; orthonormal series expansions; tensor product. (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.ccsenet.org/journal/index.php/jmr/article/view/71647/39172 (application/pdf)
http://www.ccsenet.org/journal/index.php/jmr/article/view/71647 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ibn:jmrjnl:v:9:y:2017:i:6:p:106

Access Statistics for this article

More articles in Journal of Mathematics Research from Canadian Center of Science and Education Contact information at EDIRC.
Bibliographic data for series maintained by Canadian Center of Science and Education ().

 
Page updated 2025-03-19
Handle: RePEc:ibn:jmrjnl:v:9:y:2017:i:6:p:106