Estimation of Causal Functional Linear Regression Models
J.C.S. de Miranda
Journal of Mathematics Research, 2017, vol. 9, issue 6, 106-111
Abstract:
We present a methodology for estimating causal functional linear models using orthonormal tensor product expansions. More precisely, we estimate the functional parameters $\alpha$ and $\beta$ that appear in the causal functional linear regression model:$$\mathcal{Y}(s)=\alpha(s)+\int_a^b\beta(s,t)\mathcal{X}(t)\mathrm{d}t+\mathcal{E}(s),$$ where $\mbox{supp } \beta \subset \mathfrak{T},$ and $\mathfrak{T}$ is the closed triangular region whose vertexes are $(a,a) , (b,a)$ and $(b,b).$ We assume we have an independent sample $\{ (\mathcal{Y}_k,\mathcal{X}_k) : 1\le k \le N, k\in \mathbb{N}\}$ of observations where the $\mathcal{X}_k $'s are functional covariates, the $\mathcal{Y}_k$'s are time order preserving functional responses and $\mathcal{E}_k,$ $1\le k \le N,$ is i.i.d. zero mean functional noise.
Keywords: causal; functional linear model; orthonormal series expansions; tensor product. (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.ccsenet.org/journal/index.php/jmr/article/view/71647/39172 (application/pdf)
http://www.ccsenet.org/journal/index.php/jmr/article/view/71647 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ibn:jmrjnl:v:9:y:2017:i:6:p:106
Access Statistics for this article
More articles in Journal of Mathematics Research from Canadian Center of Science and Education Contact information at EDIRC.
Bibliographic data for series maintained by Canadian Center of Science and Education ().