EconPapers    
Economics at your fingertips  
 

A comparative study of forecasting methods for sporadic demand in an auto service station

Rahul S. Mor, Jitendra Nagar and Arvind Bhardwaj

International Journal of Business Forecasting and Marketing Intelligence, 2019, vol. 5, issue 1, 56-70

Abstract: Spare parts are essential in the automobile sector and forecasting of spare parts has always been the vital prospects in an automobile service parts station. In this paper, a comparison and efforts have been made at the service station of a reputed organisation to reduce the errors in demand forecasting of intermittent demand items. The errors are compared for various methods using mean absolute scaled error (MASE) and Syntetos and Boylan approximation (SBA) method which exhibited the least error for intermittent demand and lumpy demand pattern. While single exponential smoothing method is used for smooth and erratic demand pattern. All calculations are done in MS Excel and solver tool to find optimal values of smoothing parameters.

Keywords: demand forecasting; intermittent demand; sporadic demand; mean absolute scaled error; MASE; solver; auto service station. (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=99009 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijbfmi:v:5:y:2019:i:1:p:56-70

Access Statistics for this article

More articles in International Journal of Business Forecasting and Marketing Intelligence from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijbfmi:v:5:y:2019:i:1:p:56-70