Screening mechanism when online users have privacy concerns
Jagan Jacob
International Journal of Revenue Management, 2019, vol. 11, issue 1/2, 89-125
Abstract:
In consumer-to-consumer online platforms that enable selling (e.g., eBay, Taobao) or sharing (e.g., Airbnb, Uber) of goods and services, information asymmetry between providers (e.g., sellers, hosts, drivers) and consumers (e.g., buyers, guests, passengers) pose challenges. Such platforms facilitate transactions between users (providers and consumers), who are often strangers. Stricter screening, background cheeks, and identity verification requirements may reduce the probability of bad users entering the platform. However, users are reluctant to share personal information on the internet. We design a matching mechanism to maximise platform profit when users are heterogeneous with some more likely to be good than others, but the platform does not know who. We argue that in some cases, the platform increases its profit by allowing users with a higher probability of being bad to join as well.
Keywords: game theory; information asymmetry; mechanism design; incentive compatibility; online platforms; trust; electronic commerce; sharing economy. (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=103041 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijrevm:v:11:y:2019:i:1/2:p:89-125
Access Statistics for this article
More articles in International Journal of Revenue Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().