A Distributed Intrusion Detection Scheme for Cloud Computing
Nurudeen Mahmud Ibrahim and
Anazida Zainal
Additional contact information
Nurudeen Mahmud Ibrahim: Universiti Teknologi Johor Bahru, Malaysia
Anazida Zainal: Universiti Teknologi, Johor Bahru, Malaysia
International Journal of Distributed Systems and Technologies (IJDST), 2020, vol. 11, issue 1, 68-82
Abstract:
Intrusion detection systems (IDS) is an important security measure used to secure cloud resources, however, IDS often suffer from poor detection accuracy due to coordinated attacks such as a DDoS. Various research on distributed IDSs have been proposed to detect DDoS however, the limitations of these works the lack of technique to determine an appropriate period to share attack information among nodes in the distributed IDS. Therefore, this article proposes a distributed IDS that uses a binary segmentation change point detection algorithm to address the appropriate period to send attack information to nodes in distributed IDS and using parallel Stochastic Gradient Descent with Support Vector Machine (SGD-SVM) to achieve the distributed detection. The result of the proposed scheme was implemented in Apache Spark using NSL-KDD benchmark intrusion detection dataset. Experimental results show that the proposed distributed intrusion detection scheme outperforms existing distributed IDS for cloud computing.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJDST.2020010106 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jdst00:v:11:y:2020:i:1:p:68-82
Access Statistics for this article
International Journal of Distributed Systems and Technologies (IJDST) is currently edited by Nik Bessis
More articles in International Journal of Distributed Systems and Technologies (IJDST) from IGI Global
Bibliographic data for series maintained by Journal Editor ().