EconPapers    
Economics at your fingertips  
 

A Deep Q-Network Eith Experience Optimization (DQN-EO) for Atari's Space Invaders and Its Performance Evaluation

Elis Kulla
Additional contact information
Elis Kulla: Okayama University of Science, Japan

International Journal of Distributed Systems and Technologies (IJDST), 2022, vol. 13, issue 1, 1-13

Abstract: During recent years, the deep Q-Learning is used to solve different complex problems in different fields. However, Deep Q-Learning does not have a unified method for solving certain problems because different problems require specific settings and parameters. This paper proposes a Deep Q-Network with Experience Optimization for Atari’s “Space Invaders” environment called DQN-EO. Training and testing results are presented. The performance evaluation results show that while using the proposed algorithm the agent is better at avoiding enemy bullets by 37.7% (longer lifetime) and destroying enemy ships by 14.5% (higher score).

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJDST.296249 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jdst00:v:13:y:2022:i:1:p:1-13

Access Statistics for this article

International Journal of Distributed Systems and Technologies (IJDST) is currently edited by Nik Bessis

More articles in International Journal of Distributed Systems and Technologies (IJDST) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jdst00:v:13:y:2022:i:1:p:1-13