A Proposal for Information Systems Security Monitoring Based on Large Datasets
Hai Van Pham and
Philip Moore
Additional contact information
Hai Van Pham: Hanoi University of Science and Technology, Hanoi, Vietnam
Philip Moore: Lanzhou University, Lanzhou, P.R. China
International Journal of Distributed Systems and Technologies (IJDST), 2018, vol. 9, issue 2, 16-26
Abstract:
This article describes how the objective of recent advances in soft computing and machine learning models is the resolution of issues related to security monitoring for information systems. Most current techniques and models face significant limitations, in the monitoring of information systems. To address these limitations, the authors propose a new model designed to detect potential security breaches at an early stage using logging data. The proposed model uses unsupervised training techniques with a rule-based system to analyse data file logs. The proposed approach has been evaluated using a case study based on the learning of data file logs to determine the effectiveness of the proposed approach. Experimental results show that the proposed approach performs well, the results demonstrate that the proposed approach performs better than other conventional security methods in the identification of the correct decisions related to potential security in information systems.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJDST.2018040102 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jdst00:v:9:y:2018:i:2:p:16-26
Access Statistics for this article
International Journal of Distributed Systems and Technologies (IJDST) is currently edited by Nik Bessis
More articles in International Journal of Distributed Systems and Technologies (IJDST) from IGI Global
Bibliographic data for series maintained by Journal Editor ().