EconPapers    
Economics at your fingertips  
 

Data Analytic Models That Redress the Limitations of MapReduce

Uttama Garg
Additional contact information
Uttama Garg: Chandigarh University, Ajitgarh, India

International Journal of Web-Based Learning and Teaching Technologies (IJWLTT), 2021, vol. 16, issue 6, 1-15

Abstract: The amount of data in today’s world is increasing exponentially. Effectively analyzing Big Data is a very complex task. The MapReduce programming model created by Google in 2004 revolutionized the big-data comput-ing market. Nowadays the model is being used by many for scientific and research analysis as well as for commercial purposes. The MapReduce model however is quite a low-level progamming model and has many limitations. Active research is being undertaken to make models that overcome/remove these limitations. In this paper we have studied some popular data analytic models that redress some of the limitations of MapReduce; namely ASTERIX and Pregel (Giraph) We discuss these models briefly and through the discussion highlight how these models are able to overcome MapReduce’s limitations.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... /IJWLTT.20211101.oa7 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jwltt0:v:16:y:2021:i:6:p:1-15

Access Statistics for this article

International Journal of Web-Based Learning and Teaching Technologies (IJWLTT) is currently edited by Mahesh S. Raisinghani

More articles in International Journal of Web-Based Learning and Teaching Technologies (IJWLTT) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jwltt0:v:16:y:2021:i:6:p:1-15