Research on Musical Tone Recognition Method Based on Improved RNN for Vocal Music Teaching Network Courses
Kaiyi Long
Additional contact information
Kaiyi Long: Hunan Mass Media Vocational and Technical College, China
International Journal of Web-Based Learning and Teaching Technologies (IJWLTT), 2023, vol. 18, issue 1, 1-18
Abstract:
The test results show that the fast Fourier process with multiple time superposition and a dimension length of 40 is most beneficial to the accuracy of the model. The loss curve value of the convolutional recurrent network model (CRN) is much lower than the other three models. The music tone recognition model learns better. The accuracy rate value and recall rate value of the CRN are the highest, and the accuracy rates of the four music tone indicators are 94.6%, 92.4%, 93.5%, 92.5%, and the recall rates were 93.2%, 94.9%, 95.2%, and 88.6% respectively; the improved algorithm was the most accurate in terms of F1 values and is suitable for use in vocal music teaching courses. The results show that the algorithm can be broadly performed in the zone of music tone recognition and has a certain contribution to the development of the field of music tone recognition.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJWLTT.327948 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jwltt0:v:18:y:2023:i:1:p:1-18
Access Statistics for this article
International Journal of Web-Based Learning and Teaching Technologies (IJWLTT) is currently edited by Mahesh S. Raisinghani
More articles in International Journal of Web-Based Learning and Teaching Technologies (IJWLTT) from IGI Global
Bibliographic data for series maintained by Journal Editor ().