EconPapers    
Economics at your fingertips  
 

Law Case Teaching Combining Big Data Environment With SPSS Statistics

Zhao Wang
Additional contact information
Zhao Wang: Weifang University Law School, China

International Journal of Web-Based Learning and Teaching Technologies (IJWLTT), 2024, vol. 19, issue 1, 1-15

Abstract: This paper proposes an online learning platform learner DM method based on the improved fuzzy C clustering (FCM) algorithm, constructs a learner feature database, and combines clustering analysis and SPSS statistical methods to statistically summarize the big data of law, thus improving the deficiencies of static and absolute classification of students in the student model. In the experiment paper, the improved algorithm is implemented and the experimental data is analyzed. The results show that the learner behavior feature extraction model in this paper has fewer errors and higher recall rate. Compared with the traditional CF algorithm, the error rate is reduced by 19.64% and the recall rate is increased by 22.85%. This study provides better targeted teaching programs and case resources for legal case teaching and promotes the innovation of legal case teaching mode.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJWLTT.334848 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jwltt0:v:19:y:2024:i:1:p:1-15

Access Statistics for this article

International Journal of Web-Based Learning and Teaching Technologies (IJWLTT) is currently edited by Mahesh S. Raisinghani

More articles in International Journal of Web-Based Learning and Teaching Technologies (IJWLTT) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jwltt0:v:19:y:2024:i:1:p:1-15