EconPapers    
Economics at your fingertips  
 

How to Deal with Liars? Designing Intelligent Rule-Based Expert Systems to Increase Accuracy or Reduce Cost

Yuanfeng Cai (), Zhengrui Jiang () and Vijay Mookerjee ()
Additional contact information
Yuanfeng Cai: Zicklin School of Business, City University of New York – Baruch College, New York, New York 10010
Zhengrui Jiang: College of Business, Iowa State University, Ames, Iowa 50011
Vijay Mookerjee: Naveen Jindal School of Management, University of Texas at Dallas, Richardson, Texas 75080

INFORMS Journal on Computing, 2017, vol. 29, issue 2, 268-286

Abstract: Input distortion is a common problem faced by expert systems, particularly those deployed with a Web interface. In this study, we develop novel methods to distinguish liars from truth-tellers, and redesign rule-based expert systems to address such a problem. The four proposed methods are termed split tree (ST), consolidated tree (CT), value-based split tree (VST), and value-based consolidated tree (VCT), respectively. Among them, ST and CT aim to increase an expert system’s accuracy of recommendations, and VST and VCT attempt to reduce the misclassification cost resulting from incorrect recommendations. We observe that ST and VST are less efficient than CT and VCT in that ST and VST always require selected attribute values to be verified, whereas CT and VCT do not require value verification under certain input scenarios. We conduct experiments to compare the performances of the four proposed methods and two existing methods, i.e., the traditional true tree (TT) method that ignores input distortion and the knowledge modification (KM) method proposed in prior research. The results show that CT and ST consistently rank first and second, respectively, in maximizing the recommendation accuracy, and VCT and VST always lead to the lowest and second lowest misclassification cost. Therefore, CT and VCT should be the methods of choice in dealing with users’ lying behaviors. Furthermore, we find that KM is outperformed by not only the four proposed methods, but sometimes even by the TT method. This result further confirms the advantage necessity of differentiating liars from truth-tellers when both types of users exist in the population.

Keywords: rule-base expert systems; input distortion; misclassification; value-based methods (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1287/ijoc.2016.0728 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:orijoc:v:29:y:2017:i:2:p:268-286

Access Statistics for this article

More articles in INFORMS Journal on Computing from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:orijoc:v:29:y:2017:i:2:p:268-286