EconPapers    
Economics at your fingertips  
 

Benchmarking a Scalable Approximate Dynamic Programming Algorithm for Stochastic Control of Grid-Level Energy Storage

Daniel F. Salas () and Warren B. Powell ()
Additional contact information
Daniel F. Salas: Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540
Warren B. Powell: Department of Operations Research and Financial Engineering, Princeton University, Princeton, New Jersey 08540

INFORMS Journal on Computing, 2018, vol. 30, issue 1, 106-123

Abstract: We present and benchmark an approximate dynamic programming algorithm that is capable of designing near-optimal control policies for a portfolio of heterogenous storage devices in a time-dependent environment, where wind supply, demand, and electricity prices may evolve stochastically. We found that the algorithm was able to design storage policies that are within 0.08% of optimal on deterministic models, and within 0.86% on stochastic models. We use the algorithm to analyze a dual-storage system with different capacities and losses, and show that the policy properly uses the low-loss device (which is typically much more expensive) for high-frequency variations. We close by demonstrating the algorithm on a five-device system. The algorithm easily scales to handle heterogeneous portfolios of storage devices distributed over the grid and more complex storage networks.

Keywords: dynamic programming-optimal control; industries: electric; programming: stochastic (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1287/ijoc.2017.0768 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:orijoc:v:30:y:2018:i:1:p:106-123

Access Statistics for this article

More articles in INFORMS Journal on Computing from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:orijoc:v:30:y:2018:i:1:p:106-123