EconPapers    
Economics at your fingertips  
 

Least-Cost Influence Maximization on Social Networks

Dilek Günneç (), S. Raghavan () and Rui Zhanga ()
Additional contact information
Dilek Günneç: Department of Industrial Engineering, Ozyegin University, Istanbul 34794, Turkey
S. Raghavan: Robert H. Smith School of Business and Institute for Systems Research, University of Maryland, College Park, Maryland 20742
Rui Zhanga: Leeds School of Business, University of Colorado, Boulder, Colorado 80309

INFORMS Journal on Computing, 2020, vol. 32, issue 2, 289-302

Abstract: Viral-marketing strategies are of significant interest in the online economy. Roughly, in these problems, one seeks to identify which individuals to strategically target in a social network so that a given proportion of the network is influenced at minimum cost. Earlier literature has focused primarily on problems where a fixed inducement is provided to those targeted. In contrast, resembling the practical viral-marketing setting, we consider this problem where one is allowed to “partially influence” (by the use of monetary inducements) those selected for targeting. We thus focus on the “least-cost influence problem (LCIP)”: an influence-maximization problem where the goal is to find the minimum total amount of inducements (individuals to target and associated tailored incentive) required to influence a given proportion of the population. Motivated by the desire to develop a better understanding of fundamental problems in social-network analytics, we seek to develop (exact) optimization approaches for the LCIP. Our paper makes several contributions, including (i) showing that the problem is NP-complete in general as well as under a wide variety of special conditions; (ii) providing an influence greedy algorithm to solve the problem polynomially on trees, where we require 100% adoption and all neighbors exert equal influence on a node; and (iii) a totally unimodular formulation for this tree case.

Keywords: social networks; influence maximization; complexity; integer programming; strong formulation; greedy algorithm (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1287/ijoc.2019.0886 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:orijoc:v:32:y:2020:i:2:p:289-302

Access Statistics for this article

More articles in INFORMS Journal on Computing from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:orijoc:v:32:y:2020:i:2:p:289-302