MILP Models for Complex System Reliability Redundancy Allocation with Mixed Components
Young Woong Park ()
Additional contact information
Young Woong Park: Ivy College of Business, Iowa State University, Ames, Iowa 50011
INFORMS Journal on Computing, 2020, vol. 32, issue 3, 600-619
Abstract:
The redundancy allocation problem (RAP) aims to find an optimal allocation of redundant components subject to resource constraints. In this paper, mixed integer linear programming (MILP) models and MILP-based algorithms are proposed for complex system reliability redundancy allocation problem with mixed components, where the system have bridges or interconnecting subsystems and each subsystem can have mixed types of components. Unlike the other algorithms in the literature, the proposed MILP models view the problem from a different point of view and approximate the nonconvex nonlinear system reliability function of a complex system using random samples. The solution to the MILP converges to the optimal solution of the original problem as sample size increases. In addition, data aggregation-based algorithms are proposed to improve the solution time and quality based on the proposed MILP models. A computational experiment shows that the proposed models and algorithms converge to the optimal or best-known solution as sample size increases. The proposed algorithms outperform popular metaheuristic algorithms in the literature.
Keywords: integer programming; reliability redundancy allocation; data aggregation; aggregate and iterative disaggregate (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1287/ijoc.2019.0895 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:orijoc:v:32:y:3:i:2020:p:600-619
Access Statistics for this article
More articles in INFORMS Journal on Computing from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().