EconPapers    
Economics at your fingertips  
 

An Ellipsoidal Bounding Scheme for the Quasi-Clique Number of a Graph

Zhuqi Miao () and Balabhaskar Balasundaram ()
Additional contact information
Zhuqi Miao: Center for Health Systems Innovation, Oklahoma State University, Stillwater, Oklahoma 74078
Balabhaskar Balasundaram: School of Industrial Engineering and Management, Oklahoma State University, Stillwater, Oklahoma 74078

INFORMS Journal on Computing, 2020, vol. 32, issue 3, 763-778

Abstract: A γ -quasi-clique in a simple undirected graph refers to a subset of vertices that induces a subgraph with edge density at least γ. When γ equals one, this definition corresponds to a classical clique. When γ is less than one, it relaxes the requirement of all possible edges by the clique definition. Quasi-clique detection has been used in graph-based data mining to find dense clusters, especially in large-scale error-prone data sets in which the clique model can be overly restrictive. The maximum γ -quasi-clique problem , seeking a γ-quasi-clique of maximum cardinality in the given graph, can be formulated as an optimization problem with a linear objective function and a single quadratic constraint in binary variables. This article investigates the Lagrangian dual of this formulation and develops an upper-bounding technique using the geometry of ellipsoids to bound the Lagrangian dual. The tightness of the upper bound is compared with those obtained from multiple mixed-integer programming formulations of the problem via experiments on benchmark instances.

Keywords: quasi-clique; clique relaxations; graph-based data mining; Lagrangian duality (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1287/ijoc.2019.0922 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:orijoc:v:32:y:3:i:2020:p:763-778

Access Statistics for this article

More articles in INFORMS Journal on Computing from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:orijoc:v:32:y:3:i:2020:p:763-778