EconPapers    
Economics at your fingertips  
 

Provably Near-Optimal Approximation Schemes for Implicit Stochastic and Sample-Based Dynamic Programs

Nir Halman ()
Additional contact information
Nir Halman: School of Business Administration, Hebrew University of Jerusalem, 91905 Jerusalem, Israel

INFORMS Journal on Computing, 2020, vol. 32, issue 4, 1157-1181

Abstract: In this paper, we address two models of nondeterministic discrete time finite-horizon dynamic programs (DPs): implicit stochastic DPs (the information about the random events is given by value oracles to their cumulative distribution functions) and sample-based DPs (the information about the random events is deduced by drawing random samples). Such data-driven models frequently appear in practice, where the cumulative distribution functions of the underlying random variables are either unavailable or too complicated to work with. In both models, the single-period cost functions are accessed via value oracle calls and assumed to possess either monotone or convex structure. We develop the first near-optimal relative approximation schemes for each of the two models. Applications in stochastic inventory control (that is, several variants of the so-called newsvendor problem) are discussed in detail. Our results are achieved by a combination of Bellman equation calculations, density estimation results, and extensions of the technique of K -approximation sets and functions introduced by Halman et al. (2009) [Halman N, Klabjan D, Mostagir M, Orlin J, Simchi-Levi D (2009) A fully polynomial time approximation scheme for single-item stochastic inventory control with discrete demand. Math. Oper. Res. 34(3):674–685.].

Keywords: approximation algorithms; inventory control; k -approximation sets and functions; sample average approximation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1287/ijoc.2019.0926 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:orijoc:v:32:y:4:i:2020:p:1157-1181

Access Statistics for this article

More articles in INFORMS Journal on Computing from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:orijoc:v:32:y:4:i:2020:p:1157-1181