EconPapers    
Economics at your fingertips  
 

Min-Max Optimal Design of Two-Armed Trials with Side Information

Qiong Zhang (), Amin Khademi () and Yongjia Song ()
Additional contact information
Qiong Zhang: School of Mathematical and Statistical Sciences, Clemson University, Clemson, South Carolina 29631
Amin Khademi: Department of Industrial Engineering, Clemson University, Clemson, South Carolina 29631
Yongjia Song: Department of Industrial Engineering, Clemson University, Clemson, South Carolina 29631

INFORMS Journal on Computing, 2022, vol. 34, issue 1, 165-182

Abstract: In this work, we study the optimal design of two-armed clinical trials to maximize the accuracy of parameter estimation in a statistical model, where the interaction between patient covariates and treatment are explicitly incorporated to enable precision medication decisions. Such a modeling extension leads to significant complexities for the produced optimization problems because they include optimization over design and covariates concurrently. We take a min-max optimization model and minimize (over design) the maximum (over population) variance of the estimated interaction effect between treatment and patient covariates. This results in a min-max bilevel mixed integer nonlinear programming problem, which is notably challenging to solve. To address this challenge, we introduce a surrogate optimization model by approximating the objective function, for which we propose two solution approaches. The first approach provides an exact solution based on reformulation and decomposition techniques. In the second approach, we provide a lower bound for the inner optimization problem and solve the outer optimization problem over the lower bound. We test our proposed algorithms with synthetic and real-world data sets and compare them with standard (re)randomization methods. Our numerical analysis suggests that the proposed approaches provide higher-quality solutions in terms of the variance of estimators and probability of correct selection. We also show the value of covariate information in precision medicine clinical trials by comparing our proposed approaches to an alternative optimal design approach that does not consider the interaction terms between covariates and treatment. Summary of Contribution: Precision medicine is the future of healthcare where treatment is prescribed based on each patient information. Designing precision medicine clinical trials, which are the cornerstone of precision medicine, is extremely challenging because sample size is limited and patient information may be multidimensional. This work proposes a novel approach to optimally estimate the treatment effect for each patient type in a two-armed clinical trial by reducing the largest variance of personalized treatment effect. We use several statistical and optimization techniques to produce efficient solution methodologies. Results have the potential to save countless lives by transforming the design and implementation of future clinical trials to ensure the right treatments for the right patients. Doing so will reduce patient risks and reduce costs in the healthcare system.

Keywords: precision medicine; clinical trials; experimental design; minimax optimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/ijoc.2021.1068 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:orijoc:v:34:y:2022:i:1:p:165-182

Access Statistics for this article

More articles in INFORMS Journal on Computing from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:orijoc:v:34:y:2022:i:1:p:165-182