EconPapers    
Economics at your fingertips  
 

Template-Based Minor Embedding for Adiabatic Quantum Optimization

Thiago Serra (), Teng Huang (), Arvind U. Raghunathan () and David Bergman ()
Additional contact information
Thiago Serra: Bucknell University, Lewisburg, Pennsylvania 17837
Teng Huang: Lingnan (University) College, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
Arvind U. Raghunathan: Mitsubishi Electric Research Laboratories, Cambridge, Massachusetts 02139
David Bergman: University of Connecticut, Storrs, Connecticut 06269

INFORMS Journal on Computing, 2022, vol. 34, issue 1, 427-439

Abstract: Quantum annealing (QA) can be used to quickly obtain near-optimal solutions for quadratic unconstrained binary optimization (QUBO) problems. In QA hardware, each decision variable of a QUBO should be mapped to one or more adjacent qubits in such a way that pairs of variables defining a quadratic term in the objective function are mapped to some pair of adjacent qubits. However, qubits have limited connectivity in existing QA hardware. This has spurred work on preprocessing algorithms for embedding the graph representing problem variables with quadratic terms into the hardware graph representing qubits adjacencies, such as the Chimera graph in hardware produced by D-Wave Systems. In this paper, we use integer linear programming to search for an embedding of the problem graph into certain classes of minors of the Chimera graph, which we call template embeddings . One of these classes corresponds to complete bipartite graphs, for which we show the limitation of the existing approach based on minimum odd cycle transversals (OCTs). One of the formulations presented is exact and thus can be used to certify the absence of a minor embedding using that template. On an extensive test set consisting of random graphs from five different classes of varying size and sparsity, we can embed more graphs than a state-of-the-art OCT-based approach, our approach scales better with the hardware size, and the runtime is generally orders of magnitude smaller. Summary of Contribution: Our work combines classical and quantum computing for operations research by showing that integer linear programming can be successfully used as a preprocessing step for adiabatic quantum optimization. We use it to determine how a quadratic unconstrained binary optimization problem can be solved by a quantum annealer in which the qubits are coupled as in a Chimera graph, such as in the quantum annealers currently produced by D-Wave Systems. The paper also provides a timely introduction to adiabatic quantum computing and related work on minor embeddings.

Keywords: adiabatic quantum computing; Chimera graph; integer linear programming; minor embedding; quadratic unconstrained binary optimization; quantum annealing (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://dx.doi.org/10.1287/ijoc.2021.1065 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:orijoc:v:34:y:2022:i:1:p:427-439

Access Statistics for this article

More articles in INFORMS Journal on Computing from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:orijoc:v:34:y:2022:i:1:p:427-439