Dynamic Programming for Response-Adaptive Dose-Finding Clinical Trials
Amir Ali Nasrollahzadeh () and
Amin Khademi ()
Additional contact information
Amir Ali Nasrollahzadeh: Department of Industrial Engineering, Clemson University, Clemson, South Carolina 29634
Amin Khademi: Department of Industrial Engineering, Clemson University, Clemson, South Carolina 29634
INFORMS Journal on Computing, 2022, vol. 34, issue 2, 1176-1190
Abstract:
Identifying the right dose is one of the most important decisions in drug development. Adaptive designs are promoted to conduct dose-finding clinical trials as they are more efficient and ethical compared with static designs. However, current techniques in response-adaptive designs for dose allocation are complex and need significant computational effort, which is a major impediment for implementation in practice. This study proposes a Bayesian nonparametric framework for estimating the dose-response curve, which uses a piecewise linear approximation to the curve by consecutively connecting the expected mean response at each dose. Our extensive numerical results reveal that a first-order Bayesian nonparametric model with a known correlation structure in prior for the expected mean response performs competitively when compared with the standard approach and other more complex models in terms of several relevant metrics and enjoys computational efficiency. Furthermore, structural properties for the optimal learning problem, which seeks to minimize the variance of the target dose, are established under this simple model. Summary of Contribution: In this work, we propose a methodology to derive efficient patient allocation rules in response-adaptive dose-finding clinical trials, where computational issues are the main concern. We show that our methodologies are competitive with the state-of-the-art methodology in terms of solution quality, are significantly more computationally efficient, and are more robust in terms of the shape of the dose-response curve, among other parameter changes. This research fits in “the intersection of computing and operations research” as it adapts operations research techniques to produce computationally attractive solutions to patient allocation problems in dose-finding clinical trials.
Keywords: adaptive clinical trials; dose-finding studies; dynamic learning; knowledge gradient (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://dx.doi.org/10.1287/ijoc.2021.1082 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:orijoc:v:34:y:2022:i:2:p:1176-1190
Access Statistics for this article
More articles in INFORMS Journal on Computing from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().