Optimal Frameworks for Detecting Anomalies in Sensor-Intensive Heterogeneous Networks
Ramin Moghaddass () and
Yongtao Guan ()
Additional contact information
Ramin Moghaddass: Department of Industrial and Systems Engineering, University of Miami, Coral Gables, Florida 33146; Department of Management Science, Miami Herbert Business School, University of Miami, Coral Gables, Florida 33146
Yongtao Guan: Department of Management Science, Miami Herbert Business School, University of Miami, Coral Gables, Florida 33146
INFORMS Journal on Computing, 2022, vol. 34, issue 5, 2583-2610
Abstract:
Many network/graph structures are continuously monitored by various sensors that are placed at a subset of nodes and edges. The multidimensional data collected from these sensors over time create large-scale graph data in which the data points are highly dependent. Monitoring large-scale attributed networks with thousands of nodes and heterogeneous sensor data to detect anomalies and unusual events is a complex and computationally expensive process. This paper introduces a new generic approach inspired by state-space models for network anomaly detection that can utilize the information from the network topology, the node attributes (sensor data), and the anomaly propagation sets in an integrated manner to analyze the entire network all at once. This article presents how heterogeneous network sensor data can be analyzed to locate the sources of anomalies as well as the anomalous regions in a network, which can be impacted by one or multiple anomalies at any time instance. Experimental results demonstrate the superior performance of our proposed framework in detecting anomalies in attributed graphs. Summary of Contribution: With the increasing availability of large-scale network sensors and rapid advances in artificial intelligence methods, fundamentally new analytical tools are needed that can integrate data collected from sensors across the networks for decision making while taking into account the stochastic and topological dependencies between nodes, sensors, and anomalies. This paper develops a framework to intelligently and efficiently analyze complex and highly dependent data collected from disparate sensors across large-scale network/graph structures to detect anomalies and abnormal behavior in real time. Unlike general purpose (often black-box) machine learning models, this paper proposes a unique framework for network/graph structures that incorporates the complexities of networks and interdependencies between network entities and sensors. Because of the multidisciplinary nature of the paper that involves optimization, machine learning, and system monitoring and control, it can help researchers in both operations research and computer science domains to develop new network-specific computing tools and machine learning frameworks to efficiently manage large-scale network data.
Keywords: network analytics; anomaly detection; network monitoring; state-space models (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://dx.doi.org/10.1287/ijoc.2022.1192 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:orijoc:v:34:y:2022:i:5:p:2583-2610
Access Statistics for this article
More articles in INFORMS Journal on Computing from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().