EconPapers    
Economics at your fingertips  
 

FrankWolfe.jl: A High-Performance and Flexible Toolbox for Frank–Wolfe Algorithms and Conditional Gradients

Mathieu Besançon (), Alejandro Carderera () and Sebastian Pokutta ()
Additional contact information
Mathieu Besançon: Zuse Institute Berlin, 14195 Berlin, Germany
Alejandro Carderera: Zuse Institute Berlin, 14195 Berlin, Germany; Georgia Institute of Technology, Atlanta, Georgia 30308
Sebastian Pokutta: Zuse Institute Berlin, 14195 Berlin, Germany; Technische Universität Berlin, 10623 Berlin, Germany

INFORMS Journal on Computing, 2022, vol. 34, issue 5, 2611-2620

Abstract: We present FrankWolfe.jl , an open-source implementation of several popular Frank–Wolfe and conditional gradients variants for first-order constrained optimization. The package is designed with flexibility and high performance in mind, allowing for easy extension and relying on few assumptions regarding the user-provided functions. It supports Julia’s unique multiple dispatch feature, and it interfaces smoothly with generic linear optimization formulations using MathOptInterface.jl .

Keywords: first-order methods; optimization software; nonlinear programming (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/ijoc.2022.1191 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:orijoc:v:34:y:2022:i:5:p:2611-2620

Access Statistics for this article

More articles in INFORMS Journal on Computing from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:orijoc:v:34:y:2022:i:5:p:2611-2620