EconPapers    
Economics at your fingertips  
 

Reference Vector Assisted Candidate Search with Aggregated Surrogate for Computationally Expensive Many Objective Optimization Problems

Wenyu Wang () and Christine A. Shoemaker ()
Additional contact information
Wenyu Wang: Department of Industrial Systems Engineering and Management, College of Design and Engineering, National University of Singapore, Singapore 117576, Singapore
Christine A. Shoemaker: Department of Industrial Systems Engineering and Management, College of Design and Engineering, National University of Singapore, Singapore 117576, Singapore

INFORMS Journal on Computing, 2023, vol. 35, issue 2, 318-334

Abstract: Pareto-optimal sets of multiobjective optimization problems with black-box and computationally expensive objective functions are generally hard to locate within a limited computational budget, and this situation gets even worse when more than three objectives are involved. To this end, we present a novel surrogate-assisted many-objective optimization algorithm RECAS. Unlike most prior studies, the proposed algorithm is a non–evolutionary-based method, and it iteratively determines new points for expensive evaluation via a series of independent reference vector assisted candidate searches. Furthermore, to make the number of surrogates to be maintained independent of the number of objectives, in each candidate search, RECAS constructs a surrogate model in an aggregated manner to approximate the quality assessment indicator of each point rather than a certain objective function. Under some mild assumptions, this study proves that RECAS converges almost surely to the Pareto-optimal front. In the numerical experiments, the effectiveness and reliability of RECAS are examined on both DTLZ and WFG test suites with the number of objectives varying from 2 to 10. Compared with six state-of-the-art many-objective optimization algorithms, RECAS generally performs better in maintaining convergent and well-spread approximation of the Pareto-optimal front. Finally, the good performance of RECAS on two watershed simulation model calibration problems indicates its great potential in handling real-world applications.

Keywords: many-objective optimization; computationally expensive optimization; reference vectors; radial basis function; surrogate model (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/ijoc.2022.1260 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:orijoc:v:35:y:2023:i:2:p:318-334

Access Statistics for this article

More articles in INFORMS Journal on Computing from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:orijoc:v:35:y:2023:i:2:p:318-334